If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x-169=0
a = 2; b = 3; c = -169;
Δ = b2-4ac
Δ = 32-4·2·(-169)
Δ = 1361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{1361}}{2*2}=\frac{-3-\sqrt{1361}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{1361}}{2*2}=\frac{-3+\sqrt{1361}}{4} $
| 10x^2+12=34x | | 2x^2-206=-20x | | 10×+5y=15 | | 15=-7=x/3 | | (x+19)=(3x-23) | | 7v-31=-3(2-4v) | | y-11=9(20,19,9,11) | | 25x^2–15x=0 | | 4y–20=0 | | 2=f/4− 2 | | 4u-7=u-4 | | x+32+45x-17=24x+32-17x | | 12x+2+9x-2+54=180 | | 5x-7=3(1,-1,-2,2) | | (m-10)=(3m+22) | | (0.3*10^x)+(0.4*10^x)=12 | | 0.3*10^x=3 | | 12k−12k+6k+3=9 | | (5x-3)°=(3x+23)° | | 4(n+5)=5n | | m-10=3m+22 | | z/9=4/15 | | 2(3x-5)-6=2 | | 6x4=-16 | | 28=n-11 | | 5c+6c=3 | | 6x(20+)=150 | | 2-0.2x=0.3 | | -3(t-80=32 | | -2x-26=4(x-9) | | 1=1-4n-6n | | 9k-6=-39 |